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Abstract—In the authors’ previous reports, the theoretical and experimental studies on flow and tem-
perature fields in a curved pipe were made under the condition of uniform heat flux. In the former part of
the present report, a theoretical analysis is made about temperature field far downstream from the pipe
inlet under the condition of uniform wall temperature, following the same procedure as in the previous
papers. Nusselt number is found to be remarkably affected by a secondary flow due to curvature. The
result shows that in the first-order approximation the Nusselt number of heat transfer in a curved pipe
does not differ for uniform wall temperature or uniform heat flux case, in both laminar and turbulent
regions.

In the latter part, the formulae of Nusselt numbers obtained by the authors’ study are arranged so as to
have simpler expression for a practical use.

It is also investigated what temperature should be chosen in calculation of physical properties when these

Nusselt number formulae are used.

NOMENCLATURE Nu, Nusselt number,
A, w, at the center of a cross section = [2aQ,,./KT, — T,)];
perpendicular to a pipe axis; P, dimensionless pressure,
a, radius of a pipe; = (a®/v¥p/p);
C, coefficient, — (0P/0z); Pr, Prandtl number, = uc,/k;
Cu. coefficient giving T, [equation p. pressure;;
(60)]; 0. heat flux;
Cp specific heat of fluid at constant Q.- heat flux at the wall;
pressure; Qroms mean value of Q, around the
D, dimensionless velocity of the periphery ( = — nn ~ 7n);
secondary flow in a flow core; q, dimensionless heat flux,
fe eigenfunction of (T,, — T); Qajc (T, — T,);
Jo» eigenfunction for ap ; s dimensionless heat flux at the wall ;
g, dimensionless temperature Qrom> mean value of g, around the
(T, - DAT, — T); periphery (y = — n ~ m);
h, heat-transfer coefficient, Nuk/2a; 4y dy» 4> dimensionless heat flux in the
hps mean heat-transfer coefficient be- fluid ;
tween T, and T;; R, radius of curvature of the pipe
K, Dean number, = Re,/(a/R); axis;
k, heat conductivity; Re, Reynolds number, = (2aW,,/v);
N, normalizing constant for g [equa- r, co-ordinate in radial direction in
tion (21)]; the cross section ;
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S, total area of wall in a spiral pipe;

T, temperature ;

T, mixed mean fluid temperature;

T,i- temperature giving h,, [°C];

T, wall temperature ;

Ty, fluid temperature at the pipe inlet,
or mixed mean temperature of
cold fluid at the inlet or the outlet
[*CT;

T,. mixed mean temperature of hot
fluid at the inlet or the outlet [°CT;

AT, logarithmic mean temperature
difference ;

U, component of velocity in r-direc-
tion, u = Ua/v;

V., component of velocity in -
direction, v = Va/v,

W, component of velocity in z-
direction, w = Wa/v,

W, mean velocity;

X, equation (29);

X, ncosy;

2 nsiny;

Z, co-ordinate along the pipe axis,
RO,z = Z/a.

Greek symbols

o, eigenvalue;

®0, minimum eigenvalue ;

d, thickness of the boundary layer
divided by the radius of pipe, a;

o1, thickness of the thermal boundary
layer divided by the radius of
pipe, a;

O mean value of & around the
periphery (W = — n ~ m);

¢, 07/d;

H, = Rj/a;
1, =r/a;

o, axial co-ordinate;

U, viscosity ;

v, kinematic viscosity;

g, 1 —n;

P, density;

T, wall temperature gradient in the
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case of uniform heat f{lux
(constant);
v, co-ordinate in circumferential

direction in the cross-section per-
pendicular to the pipe axis.

Subscripts
0, value at the pipe wall;
1, value at the flow core region;
c, a curved pipe;
s, a straight pipe;
o, value at & = §;
O, value at & = J5.

1. INTRODUCTION

FORCED convective heat transfer in a curved
pipe is found widely in such various industrial
equipments as spiral tube heat exchangers.
However, only a few papers have been reported
about this problem and sufficient reliable data
are not available. The studies made up so far
by other investigators are mainly experimental
ones. These experiments do not always interpret
the cause of increase in pressure drop and heat-
transfer rate due to curvature.

The purpose of the present study is to examine
heat-transfer mechanism in a curved pipe
theoretically and experimentally, and to present
the design data which are important for practical
use. From a practical point of view, the case
when a secondary flow due to curvature gives a
remarkable effect on heat-transfer coefficient is
analysed in our research. The authors have
already analysed theoretically the flow and
temperature fields in fully developed laminar and
turbulent flows in the first [1] and second [2]
reports. The results of theoretical analyses have
been ascertained by experiments. These theo-
retical and experimental studies were done under
the condition of uniform heat flux. This wall
temperature condition is often found in a
counter-flow heat exchanger.

On the other hand, we have another wall
temperature condition where fluid flowing
through a spiral tube is heated or cooled under
the condition of uniform wall temperature.



FORCED CONVECTIVE HEAT TRANSFER IN CURVED PIPES

Therefore, for practical purposes, it is also
necessary to examine heat transfer in a curved
pipe for the case when the wall temperature is
kept uniform. The former part of this report is
devoted to theoretical analysis of temperature
field in the region not close to the pipe inlet
under the condition of uniform wall temperature.

In the previous papers we have discussed the
velocity and temperature fields both of which
are fully developed toward pipe axis. Usually
a straight pipe is jointed to the inlet of the
curved pipe and Ito [3] reported that the in-
fluence of curvature goes upstream in a straight
pipe thirty times of a pipe diameter as far from
the curved pipe inlet. This fact may be under-
stood as to show that a secondary flow begins
to develop fairly upstream before the inlet of a
curved pipe. Moreover, the secondary flow
tends to accelerate development of the flow and
temperature fields by its mixing effect. This
extremely shortens the entrance length of a flow
in a curved pipe which is defined as the length
from the curved pipe inlet to the beginning of the
fully developed region. Therefore, in the case of a
pipe coiled several times, the influence of the
entrance region on flow resistance and heat
transfer is negligibly small. In such cases, the
resistance coefficients and the Nusselt number
formulae obtained in the previous papers [1, 2]
can be used along almost a whole length of a
coiled pipe. However, when the coiled pipe is
very long, there are cases when the fluid tempera-
ture difference between the pipe inlet and the
outlet is very large, and the physical properties
vary considerably. In these cases, if the tempera-
ture to be used for evaluation of physical
properties in the formulae is known, the formulae
for heat-transfer calculation become useful for
design engineers.

For this purpose cases are studied when
Prandtl number is near unity or more, and
variation of temperature in a cross section
perpendicular to a pipe axis is not so large and
physical properties ina cross section are regarded
as constant. The Nusselt number formulae
obtained so far are arranged to be in simple
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forms so that they are referred conveniently. By
the direct use of these simpler formulae, the
temperature giving physical properties for the
calculation of average Nusselt number of a
long coiled pipe is shown for air, water and oil.

2. THEORETIC ANALYSIS OF TEMPERATURE
FIELD UNDER THE CONDITION OF
UNIFORM WALL TEMPERATURE
As shown in Fig. 1, when a fluid flows
through a pipe with a uniform wall temperature,
the temperature profile is changed from the
uniform profile at the pipe inlet to the charac-
teristic one at downstream. In the figure, Z is a
co-ordinate along the pipe axis, R is a radius of
curvature of pipe axis and 6 is an angle of
curvature, whence Z = RO. Co-ordinates in a
cross section perpendicular to pipe axis are
shown in Fig. 2, where r is a radial co-ordinate
and Y is a peripheral co-ordinate. Figure 1
shows the temperature profile in the plane AA4.
In order to analyse such a development of
temperature distribution from the pipe inlet,
the energy equation should be solved under the
following boundary and initial conditions.

Boundary condition.

at r=aq, T=T,

where T is temperature and q is a radius of the
pipe.

Initial condition:

at Z = O, T = To.

The solution may be expressed in the following
form:

T, - T =°°ZO fiexp(-6Z] ()

where a; is an eigen value and f(r, ¥ is an eigen
function.

It may be difficult to obtain a solution for
the whole region in the case when temperature
distribution is distorted by such a secondary
flow as that in a curved pipe. Let us consider the
temperature distribution in the region not close
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y=0 7. (constant)
z , . —
y =t
7, ‘-J Region of similarity —=

F1G. 1. Development of temperature distribution.

to the pipe inlet where Z is large enough. When
we write the smallest eigen value as oy, the
term f, exp [ — 2Z] becomes predominant in
equation (1). In that region, regardless of the

NG

Fi1G. 2. System of coordinates.

initial condition, the temperature difference
between the wall and fluid is written approxi-
mately from equation (1) as follows:

T, - T =fyexp[— «pZ]. (2)

The definition of a mixed mean temperature
T,, is given as

1 R a
-n 0

where W is a velocity component in the direc-
tion of Z(#); and W,, is a mean velocity.

Substitution of equation (2) into equation
(3) yields

Tw—T,”:?i[—;“—ﬂ]—ffoordrdw. (4)
na‘W,,

-n 0

Define a dimensionless temperature g as
T,—-T
T,-1, ¢ ®)

When the velocity distribution is fully de-
veloped., it can be shown from equations (2) and
(4) that g is a function of only x and y, and does
not change with Z. This fact is understood as
temperature distribution profiles become almost
similar in the region far downstream from the
inlet as shown in Fig. 1. We call this region as a
region of similarity and the analysis is made on
this region. As mentioned in the introduction.
the entrance region of a flow field in a curved
pipe is usually short and in the case of a long
coiled pipe almost the whole length of the pipe
is reasonably regarded as the region of similarity.

Although use of dimensionless temperature g
expressed by equation (5) lessens the complexity
of the problem. the analysis is not so easy as the
case of uniform heat flux. In the present analysis.
the second order solution by boundary-layer
approximation as found in the previous papers
[1.2]is not calculated and only the largest terms
necessary for the calculation of the first order
solution are taken into account in the following
analysis.

All quantities are put in the dimensionless
forms as follows. where U and V are velocity
components in the r, -directions respectively;
p. pressure; p, density; p, viscosity; v, kinematic
viscosity: c,. specific heat of fluid at constant
pressure; k, heat conductivity of fluid, and Q is
heat flux.

n =r/a; H = R/a; z = Z/a(= HO);
u= Ua/v; v = Va/v, w = Wa/v;
P = (a®*V¥)p/p); C = — 0P/oz
Reynolds number, Re = 2aW,,/v;
Ay = Ay, q = Qajc (T, — T,).



FORCED CONVECTIVE HEAT TRANSFER IN CURVED PIPES

2.1 Analysis for the Flow Field

As pointed out in the previous papers [1, 2],
in the range of practical importance, a flow field
in a curved pipe differs greatly from that in a
straight pipe. Namely., the centrifugal force
causes a secondary flow, and stresses caused by
the secondary flow predominate over the entire
core region of the cross section of the pipe. A
velocity distribution in the region except in a
thin layer adjacent to the pipe wall has a
relatively gentle gradient as shown in Fig. 3. On
the other hand, in the thin region adjacent to

Straight |
pipe |

I
|
I
I
t
I

FiG. 3. Velocity distribution.

the wall a velocity distribution has a steep
gradient and this thin layer may be called a
boundary layer. The secondary flow in the core
region is expressed practically by a uniform
flow toward the outer side of curvature. The
dimensionless velocity of the uniform secondary
flow in the core is denoted by D, and the
dimensionless thickness of the boundary layer
is denoted by 4. Since the variation of § with
peripheral angle is small, its variation is
neglected and § is replaced by its peripheral
mean value 4,

2x
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As in the previous papers [1, 2], the velocity
components in the core region are expressed as
follows:

u, = Dcosy

v; = — Dsiny ©)

w, =4+ %11 cos ¥
where the suffix 1 denotes the values in the core
and A = const. in both laminar and turbulent
regions. The dimensionless pressure gradient
C is expressed by the following equation when
the 1 power law is assumed for the turbulent
velocity profile:

2Re

c=17,
00134 Re* 6, (turbulentflow).  (8)

(laminar flow) (7

Velocity distributions are expressed in terms of
D and §,, and D and 6, are obtained as follows:

09656 K* (laminar flow) 9)
D= b
0-0852 Ret (i) (turbulent flow) (10)
46311 K~* (laminar flow) (11)
5, =1 02566 {Re (%) 1"
= ozseofre )
(turbulent flow) (12)

where K is so called Dean number
[= Re /(a/R)].

2.2 Analysis of Temperature Field
(a) Fundamental equations
By using non-dimensional quantities the
energy equation is expressed as follows:
0qy
— 3 4g. =0
" on (ng,) + R
where g,, q, and g. are dimensionless heat flux
in the n, ¥ and z-directions respectively. As

(13)
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shown in the previous papers, heat fluxes are
expressed as

= _i@_g+u
n = Pr oy g
1 dg (14)
W= Bryay
q4: = wg

where Pr is Prandtl number, and heat flux in
z-direction due to heat conduction is ignored.
In the case of turbulent flow, u, v, w and g denote
time mean values. and heat fluxes caused by
turbulent fluctuation should be added to each
right-hand side of equation (14). However,
when deriving temperature distribution in the
flow core region, the contribution by turbulent
fluctuation can be neglected as well as the terms
due to heat conduction.

(b) Determination of o,
In order to calculate a, we use the energy
equation expressing heat balance on a whole

cross section of the pipe. In consideration of
heat balance as shown in Fig. 4 and putting an

Pipe
wall z

i
-

FIG. 4. Heat balance of fluid.

inward heat flux at the wall Q. we have the
following relation:

f Q.ady = pcpé% ~[‘[WTr dr dy.
- ’ - 0

Equation (15) is transformed into the following

(15)
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non-dimensional form;

%o
9Qwm = _4— Re (16)
where q,,,, is the mean value around the periph-
ery (f = —n ~ n) of non-dimensional heat

flux q,,.

(c) Flow core region

On the assumption that heat transfer by a
secondary flow in equation (14) is predominant
in the core region, heat fluxes are expressed as
follows:

qy = U19,
qy = V194 (1n
q4: = W14,

Substituting equations (6) and (17) into equa-
tion (13) and using perpendicular coordinates
x =1 cos Yy and y =# sin ¥ for the sake of
simplicity, we have

dg C
Dgxi = a, (A + Bx) g

The solution for equation (18) is obtained as

C
g, = Nexp{ <4x + — 2D >} (19)

where N is constant.

The profile of g, by equation (19) is like that
shown in Fig. 5. The figure shows a similar
profile to that obtained under the condition of
uniform heat flux. As we are discussing the
temperature field in the core region, g, given by
equation (19) may be expanded as:

C
=N4{1 420
g1 {+DG‘1x+2D)

ol 4 c N
+2—D2 x+ﬁx

(18)

ol AW
+ D> Ax + pX )t (20)
A
B {1 * %T 2D2 (C + aod?)x*
%A (a0,C  afA?\ , (21)
TW+—’6D2 X+ ...



FORCED CONVECTIVE HEAT TRANSFER IN CURVED PIPES

The constant N is determined from equation
(5) giving the definition of g so as to satisfy the
relation:

1

2
= dndy = 1.
nReijw1ﬂ Y

-n

(22)

The integration of equation (22) is done in
consideration that the boundary layer is ex-
tremely thin, and g, and w; may be extended

N
4

e e e

FI1G. 5. Distribution of g,.

over a whole cross section. By taking into
account the terms to x? in the expansion of
equation (21), the following relation is obtained
1

3a,C

14229~
+8D2+

N =

1aZA> 23)
8 D?
(d) Boundary layer

(I) Laminar flow. In case of a laminar flow,
q.. is given by the temperature gradient in radial
(n) direction at the wall. Dimensionless distance
from the pipe wall is denoted by &£ (= 1 — ). In
order to take into account the effect of Prandtl
number, a thermal boundary layer of thickness
dr is supposed along the pipe wall. The distribu-
tion of dimensionless temperature g in the
boundary layer should be assumed to solve an
energy integral equation according to d; < 0
and 1 = 4.

In case of §; < J, the boundary conditions
are

at &=0,
E=9

g=0
g = Gdio
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By taking into account the terms out of g in the
first report [1] enough to satisfy these condi-
tions, g is written that

2 g & ¢ e
g=g‘“{f(5_2?+3§> +3?_25}
(24)

where g,, denotes g, at & = §, { is the ratio 64/
and a function of Pr as obtained later.

In case of 3 = 6, g, as shown in equation (21)
is applicable to the edge of the temperature
boundary layer, and g is determined so as to
satisfy the following boundary conditions [1]:

at & =0,

é = 6Ta g = gléT
where g,,,. denotes g, at £ = or.

N S
g gla'r 5T 5% .

Dimensionless heat flux at the wall g,, is ex-

pressed as
_L(%
Gw = Pr aé 0

where the suffix 0 denotes the value at the wall.

Equation (24) or (25) is substituted into
equation (26). In equations (24) and (25) g,, and
g1s, are obtained by putting in equation (21)
x=(1—208) cos Yy and (1 — d7) cos Y res-
pectively. Since § and d; are very small com-
pared with unity, we may put x = cost ¥ and
find

g=0

(25)

(26)

gis = G1sr-
Then in both cases of 67 2 4, equation (26)
becomes
2
{é6Pr
2N

— %o 2 2
gapr[1+ﬁ(c+“°‘4)c°s ]

aAd | (C, @AY }
+ D {1+ (2D2+ D2 cos“ Y cosy|.
(27)

9w = 15
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The mean value of g, is obtained from equa-
tion (27). By using N in equation (23), we have

2

9wm = Z—S—}—)‘; X (28)
where 242
1426, %o
x 4D? 4D (29)
B e 30,C  aZA?
8D? 8D?

For calculation of only the first approximation.
o is replaced by §,,.

It is evident from equation (29) that X is
almost equal to unity when o,C/D? and a2 42/D?
are small. The value of X from equation (29) is
calculated and is shown in Fig. 6. The figure

0% %08 | 2 4 6 80 20 20
Pr

FIG. 6. X.

shows that X is reasonably assumed to be unity
in the first approximation.

According this approximation, from equa-
tions (16) and (28) «, is given by

8

s 6, Re Pr (30)

%o
The ratio of temperature and velocity
boundary-layer thickness { is obtained by con-
sidering heat balance in the boundary layer.
We may put <1, n=1~-¢x1, d/on=
— 0/0E ~ O(6™Y), u ~ OD), v ~ (D/S) and
¥ ~ O1).
From equations (13) and (14), the following
boundary-layer equation is written

162 a 3
g g i (31)

EEEZ u&—UE—+a0wg=0.

Integration of equation (31) from ¢ =0 to
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¢ = 6 and use of equation of continuity yield
é

vdé — i gvdé + aofwg dé (32)
0

0

w=416%
0

where (1/Pr)(dg/0&), is written as q,,

In case of d; = 4, the integration has to be
done from ¢ = 0 to ¢ = d,, however, since the
difference between § and d; is small, equation
(32) is useful for both cases of 6; 2 §. The distri-
butions of velocity components, v and w, in the
boundary layer are written as explained in the
first report [1].

12D (¢ SIS
U27(5_2§+§>SIH¢ (33)

w= (4+%cosz//> (2§-§—§)

The order of magnitude of the terms in right
hand side of equation (32) is examined by using
equations (33) and (34) in advance. The first and
second terms have the order of magnitude K*
due to D, where K is Dean number [= Re
/(a/R)]. The third term has the order of magni-

tude o,A4J,. This is written as the order of
magnitude K°as 4 = Re/2. The present analysis
is concerned with the range of large K, so that
the third term is small in comparison with the
other terms which are convective terms due to a
secondary flow.

(i) The case of 67 < 4. Equations (24) and (33)
are substituted into the right-hand side of
equation (32). The dimensionless heat flux is
written in the following form:

(34)

q, = E + Fcosy (35)

where

2

Y a,C  aiA >
E== N<1+41)2+121)2 (36)

D 8 ,C  a3A?
F=f2-2)n(1 428, %4
35( c) ( tapr T apz) BT

In equation (36), E is replaced by its mean value
about i [1].
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The derivation of equations (36) and (37) is
based on the linearization of q,; as follows:

= N{l + 241 _ )cosy.

2D2 (C + a4 (1 — 8)% cos® y

M(%OD(;' o["Ai)(l 8) cos® ¢ + . }
(38)
N a,C  aiA?
~ N{l + aD? + 2D
A C a2A?
+%T<1 +ap7+ 121))°° } (39)

Using N in equation (23) and assuming X in
equation (29) to be unity, we have from equation

37
D 8
F=35 (22 B Z)

The similar procedure can be employed about
E in equation (36). Namely, as «,C/D? is smaller
than unity and a,C/D? » a3A?/D?, we approxi-
mately have the following relation:

apAd _ agRe
2 4
Equation (41) shows that the mean value of
q,, around the periphery (f = — n ~ n) given
by the energy balance equation in the boundary
layer also satisfies equation (16).

From equations (35). (40) and (41), g
written that

(40)

E= (41)

aoRe

8
="y 35 (22 g) cos Y. (42)

On the other hand, ¢q, is also expressed by
(0g/0€)o. We have from equations (24) and (26)

agRe

_ agRe
qw - 4

{Dé,Pr

cos ¥. 43)

By equating equations (42) and (43). we have
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the following equation for {
2, 8 8 _
ECAE TR =721 R

By substitution of D and §,, of equations (9) and
(11) into equation (44), { is determined as

c=2h 4 i+ 71
1 4 Pr

1,Pr =2 1.

(45)

Since { €

(ii) The case of d; = 4. By substituting equa-
tions (25) and (33) into equation (32), we have
the following equation from equation (32) just
like the previous case

R
4, = “°4 ¢ 4 Fcosy (46)
where
D[ 4 1
F "‘s(“f*?)' @)

From equations (43) and (46), {

is determined
as
S | 10
°=3 {2 * \/(p* B

)

since { = 1, Pr<il.
The results for { given by equations (45) and (48)
are just the same as those in the first report [1].

(IT) Turbulent flow. In case of turbulent flow,
following the procedure shown in the second
report [2]. g,, can be reduced from Nusselt
number formula of a straight pipe under the
condition of uniform wall temperature, that is,
g,, is determined according to the local law of
turbulent heat transfer in a pipe, which can be
derived from Nusselt number formula for a flow
in a straight pipe by use of some appropriate
assumptions [2]. It may be assumed with
sufficient accuracy that the local law in a straight
pipe is applicable to the flow near the wall of a
curved pipe.

(48)

(e) Nusselt numbers
The definition of Nusselt number is given by

2aQ wm

Nu= T -1)

(49)
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where Q,,, is the mean value of Q,, around the
periphery (y = — n ~ =) and 7, is defined by
equation (3). For a curved pipe. use of the
dimensionless quantities yields

NW=2%JW=%RU% (50)
For laminar flow. by using ¢, in equation (30)
and §,, in equation (11), equation (50) is written
that

0-864

Nu, = K* (51)

TARU NAKAYAMA

It is found that equation (51) is quite the same
as the Nusselt number formula in the first
approximation which is obtained in the first
report [1] under the condition of uniform heat
flux. However, in the case of a straight pipe for
uniform wall temperature,

Nug = 3-66.

Then, Nu,/Nu, is different from the results of
the first report [1] and it is written that

Nu, _ 0236

Nu {

(52)

K*.

(53)

s

Table 1. Comparison of analytical procedure between two cases of wall temperature
conditions

Uniform heat flu

X Uniform wall temperature

T,-T T,—-T
Dy a T, -1,
@ i Im 1
® 4q, 2w I L
couta c (T, — T,)
Re Re
@ Gwm T T“o
2q,m Pr ReP ReP
® Ny, on T _ T 2o Pr = = a5
Im 29,
; 2 2
to, Protom to,, protem
1 m-1
qw Pr—(l_,‘) 5»1 m[wl:in glé]m
t . M
=Lgn {1 +— = L(1 + May)
gm
© 4qum
where
—1 m=1 m—-1C
L= —-(1—x)5 m m s —
4, Pr " A M — T
m=—1
—ntl (Om — 1)2] ™ 4m— 1
PO O i
m(4m — 1) 2m + 1
m=-1
Nu,= BRe ™ Pr*
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In case of turbulent flow, the analysis can be
done in a similar way with that shown in the
second report [2]. The result is shown in Table 1
in comparison with the result under the condi-
tion of uniform heat flux. In the first report 1],
q,, is defined as g,, = Q,,/kt where 7 is a constant
wall temperature gradient along the pipe axis.
This definition is modified in Table 1.

The definition of non-dimensional tempera-
ture g is given by (D in Table 1 and the mean
value at the edge of the boundary layer g,;
becomes as shown in @ in the same Table.

For laminar flow, it is found by referring
equations (40), (45) and (46) in the first report
[1] that g,,,  is equal to g, For turbulent flow,
although a slight difference is found by examina-
tion of the analysis in the second report [2],
d1s,, is almost equal to g,

Dimensionless heat flux g,, is defined as @ in
the Table, and considering heat balance over a
whole section, we have q,,, mean value of g,,
as @ in Table 1. Nusselt number is formed by
4.m and g, (in the case of uniform wall tempera-
ture, g,, = 1). The analysis makes it clear that
1/g9., and a, are corresponding to each other.

Dimensionless heat flux g, is expressed as
® in Table 1. In case of turbulent flow, x is
constant, m = 4 or 5, and §,, is constant deter-
mined correspondingly to ¥ and m [2]. By
equating ® with @ in Table 1, g,, and «, are
obtained.

Table 1 clarifies that, in case of laminal flow,

when ( is the same, Nusselt numbers become
equal for both cases of wall temperature condi-
tion. .
It is reported by Seban and Shimazaki [4]
that Nusselt number in a straight pipe for
turbulent flow is hardly affected by the wall
temperature condition. Therefore, §,, and « in
Table 1 are almost equal for both wall tempera-
ture conditions, and Nusselt nhumber formulae
for a curved pipe obtained in the second report
[2] can be used for both cases.

The present analysis are limited in the first
order solution of boundary-layer approxima-
tion, however correction by the second approxi-

mation can be considered small and may not be
affected remarkably by the condition of wall
temperature. Therefore, considering that Nusselt
number formulae are the same for both cases, it
may be concluded that Nusselt number formulae
obtained under the condition of uniform heat
flux can be applied with enough accuracy to the
case where wall temperature is kept uniform.

3. PRACTICAL FORMULAE AND EVALUATION
OF PHYSICAL PROPERTIES GIVING
MEAN NUSSELT NUMBER

As pointed out in the introduction, the length
of an entrance region is extremely short in a
curved pipe compared with that in a straight
pipe, and the influence of pipe inlet may be
negligible in the case of a long spiral pipe. We
restrict the study of the entrance region by
showing the reported experimental results. It is
reported by Ito [3] that pressure drop becomes
proportional to pipe length when

0./(R/a) > 47 (54)

where 0 is an axial angle shown in Fig. 2
measured from the inlet of a curved pipe. About
heat transfer, experiments done by Seban and
McLaughlin [5] show a similar result of the short
entrance region.

Therefore, as mentioned in the introduction,
the Nusselt number formulae obtained on the
assumption that flow and temperature fields are
fully developed can be used with enough
accuracy for calculation of heat transfer rate in
a long spiral pipe.

3.1. Practical Formulae of Nu.
(a) Laminar region

In the first report [1], the formulae for
Nusselt number obtained by the first and second
order solutions of boundary-layer approxima-
tion are presented. They are shown by a straight
and a curved line respectively in Fig. 7.

The analysis of resistance coefficient yields
two lines similar to those shown in the figure,
and the curve of the empirical formula given by
Ito [3] enters between a straight and a curved
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line. The experimental results about heat trans-
fer [1] prove that correlation equation may be
expressed referring these two lines and the curve
of the empirical resistance formula [3]. This
correlated curve is shown by a dashed line in
Fig. 7 and may be used for practical purposes.

]
. 3 /
10 M. T pi1ez354%)

o 10° 10*
K[=2Re fla/R)]

FiG. 7. Nu/Nu, — K diagram (Pr = 1).

The similar lines can be drawn for various
values of Pr ranging from the neighbourhood
of unity to infinity. They are approximately ex-
pressed by the following equation in a simpler
form than the formulae in the previous paper [1].

Ny, = 9-8;‘!1@(1 + 235K7%)

The boundary-layer thickness ratio { is
obtained from equations (45) and (48), or from
Fig. 8. The applicable range of equation (55) is
considered to be k > 30(Pr = o0) ~ 60(Pr = 1)
by taking into account of availability of the
theoretical analysis for resistance coefficient [1]
and of experimental results of oil obtained by
Seban and McLaughlin [5].

(53)
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Critical Reynolds number is given by Ito [3].

Re. =2 x 104(2)°
cr R

(b) Turbulent flow
The results of the second report [2] are cited
in the following.

(56)

For gases.
Pr a\*
- H =
Nue = S63prt — 0078) ¢ (R)
0-098
x |1+ =Tl (57)
a
() §
R

This formula is applicable to the region, where
Pr ~ 1 and Re(a/R)? > 01
For liquids.

58)

Applicable range is

Pr>1,  Re(a/R)*® > 04.

In Fig. 9, theoretical curves of Nu, are shown
about the two values of R/a, 40 and 18-7, by
taking Re as the abscissa. The curved pipes
having the radius ratios of 40 and 18-7 were used
in the authors’ experiments [1] and [2]. and the
experimental results are also shown. The curves
drawn on the left hand side in the figure are the
analytical results obtained by the pertubation
method [6]. They are calculated on the assump-
tion that the effect of the secondary flow is very
small. The results diverge rapidly with increasing
Re.

It is clarified in Fig. 9 that the effect of R/a is
less in turbulent region than in laminar region,
while the gradient of Nu, against Re is large for
turbulent flow.
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F1G. 9. Nusselt number in curved pipes of R/a = 40 and 18-7.

3.2. Temperature giving Physical Properties

In order to examine what physical properties
should be used in calculating heat-transfer rate
by means of Nusselt number formulae for a
fully developed flow with a large temperature
change, we express the mixed mean temperatures
of fluid defined by equation (3) at the inlet and
the outlet by T, and T, respectively as shown in
Fig. 10. Physical properties change with mixed
mean temperature T, which increases or de-
creases from T, to T,. In applications of spiral
pipes as heat exchangers we often have a big
temperature change, therefore, it is very im-
portant to consider the change of physical
properties to calculate heat-transfer coefficient
h given by

Nu,. (59)

2a
Physical properties in the formulae for Nu,
and k change with temperature.
We introduce the following definition of a

mean heat-transfer coefficient, when T; > T,
I
1

= T,
e L

To

h (60)

The total heat-transfer area over the complete
length of a spiral pipe is expressed by S, and the
net heat flux passing S is denoted by Q.
Depending on the wall temperature condition,
Qr is written as follows:

Uniform heat flux:

QT = S(Tw - Tm)hm (61)
Uniform wall temperature:
QT = SAT;mhm (62)

where AT, is the logarithmic mean temperature
difference given by

I -Tp
IT, — TAT, — Ty

AT, = (63)

It seems convenient for practical use to find a
particular temperature T,,; which gives h,, in
equations (61) and (62). The procedure is des-
cribed in the following, By substituting equation
(59) into equation (60), and integrating in an
appropriate temperature range from T, to T
chosen respectively for air, water and oil, we
obtain h,, The temperature which gives the same
value of h with h,, is defined as T,,;. In equation
(59), Nu, is given from equation (55), (57) or (58)
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depending on whether a flow is laminar or
turbulent.

Results are shown as follows, when Tj is taken
as a temperature at low-temperature side [°C]
either inlet or outlet:

T = T + ClTy — Tp).

Values of C,, are given in Table 2.
Temperature ranges taken in the calculations
are:

air:  0°C ~ 200°C
1 < (T, + 27T, +273) < 2

water: 10°C ~ 80°C
oil:  20°C ~ 100°C.

(64)

Table 2 shows that, when the Nusselt number
formulae given by equations (55), (57) and (58)

r

=

Qoz

<
-
7
F1G. 10. Spiral pipe.

Table 2. The value of C
Air Water Oil
Laminar 05 04 05
Turbulent 05 05 05

are used, physical properties at the arithmetic
mean temperature between inlet and outlet may
be taken in the calculations of heat-transfer
coefficient for most cases.

YASUO MORI and WATARU NAKAYAMA

CONCLUSIONS

The study is made in addition to the previous
reports [ 1] and [2] for the purpose of obtaining
the practical method of evaluating heat-transfer
rate in a spiral pipe and the following conclusive
results are obtained.

(1) Theoretical analysis of the temperature
field downstream from the pipe inlet under the
condition of uniform wall temperature was
made. The results prove that the formula of
Nusselt number for uniform wall temperature
case is the same with that for uniform heat flux
case.

(2) For the convenience of calculating heat-
transfer rate in a long spiral pipe, the analytical
results for laminar flow in the previous paper
[1] are arranged and written in a simpler form
as a practical formula of Nusselt number. The
practical formulae for turbulent flow [2] are
also shown, and the applicable regions of every
formula are subjected.

{3) Change of physical properties with temper-
ature in these formulae is examined for the cases
of air, water and oil. The results show that,
except for the case of laminar flow of water,
physical properties at the arithmetic mean
temperature between inlet and outlet may be
used.
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Résumé—Dans les articles précédents des auteurs, des études théoriques et expérimentales sur les champs
de vitesses et de températures dans un tuyau courbe ont été faites dans le cas d’un flux de chaleur uniforme.
Dans la premiére partie de I’article ci-dessous, on a analysé théoriquement le champ de températures loin
a ’aval de I’entrée du tuyau dans le cas d’une température pariétale uniforme, en suivant le méme processus
que dans les articles précédents. On a trouvé que le nombre de Nusselt est modifié d’une fagon remarquable
par un écoulement secondaire dii 4 la courbure. Le résultat montre que dans ’approximation du premier
ordre le nombre de Nusselt pour le transport de chaleur dans un tuyau courbe pour le cas de la température
pariétale uniforme ne différe pas de celui pour le cas du flux de chaleur uniforme, soit dans la région
laminaire, soit dans la région turbulente.

Dans la derniére partie, les formules des nombres de Nusselt obtenues par les auteurs sont modifiées
afin d’obtenir une expression plus simple pour un usage pratique.

On a aussi recherché quelle température devrait étre choisie pour calculer les propnetes physiques

lorsque ces formules de nombres de Nusselt sont employées.

Zusammenfassung—In den vorangegangenen Arbeiten der Autoren wurden die theoretischen und experi-
mentellen Untersuchungen des Stromungs- und Temperaturfeldes in einem gekriimmten Rohr unter der
Bedingung gleichmissigen Warmeflusses durchgefiihrt. Im ersten Teil des gegenwirtigen Berichtes wird
eine theoretische Analyse des Temperaturfeldes in grosser Entfernung stromabwirts vom Rohreinlauf fiir
einheitliche Wandtemperatur gemacht, wobei wie in friitheren Arbeiten verfahren wurde.

Es ergibt sich, dass die Nusselt-zahl durch die Sekundérstromung infolge der Kriimmung erheblich
beeinflusst wird. Das Ergebnis zeigt, dass Nusselt-zahlen fiir konstante Wandtemperatur oder konstanten
Wiirmefluss in erster. Néherung nicht voneinander abweichen, sowoh! fiir laminare als auch turbulente
Bereiche.

Im zweiten Teil sind die fiir die Nusselt-zahlen gefundenen Gleichungen so umgestellt, dass sich zur
praktischen Verwendung einfachere Ausdriicke ergeben.

Es wurde auch untersucht, welche Temperatur zur Bestimmung der Stoffwerte in diesen Nusselt-

gleichungen zugrundegelegt werden soll.

Andoranua—B npeargymux pa6oTax aBTOpa TEOPETHUECKH M BKCIEPNMEHTALHO N3YYaJHCh-
TeueHWe M TeMIepaTypHHe NOJA B U30rHYTON! TpyGe B yCIOBHAX OTHOPOJHOrO TEHJIOBOrO
noToxka. B mpemwyme#t dactTH faHHONK pPaGOTH TEOPETMYECKHI AHANW3 TEMIIEPATYPHOrO
TOJIA Ha yOAJEeHHH OT BXORA B TPyOy BHN3 [0 MOTOKY B YCIAOBHUSX N30TEPMUYECKON CTEHKH
TIPOBOAMTCS IO TOM e METORMKe, 4TO M B mpeamaymux paGorax. Halimewo, 4ro Ha ymciIo
Hyccesbra 3Ha4nTeNbHO BIMAKT BTOPHYHHE IMOTOKH, 00yCIOBIEHHHE KPHUBM3HOU CTEHKH.
PeaynnTaTh B mepBoM NpUGIMKeHNM YKASHBAWT HA OTCyTCTBUe oTiamyult ducen Hyccensra
AN MCKPHUBJIEHHOM TpYOH KaK B CJIydae M30TePMUYECKON CTEeHKM, TaK M B CIydae OHOPOJ-
HOTO TeIJIOBOTO MOTOKA M B JAMUHAPHOM, U B TypOyaeHTHOI obmacTH.

®opmymn pua yuciaa HyccenbTa, nonydyeHHue aBTopamMu, MPUBeJEHH K BULY, XOCTATOUHO
TIPOCTOMY JUIA MPAKTUYECKOTO YIOTPeGIeHnsA.

PaccMorpeH BOnpoc 0 BHOOpe ONpeReJsiomefl TeMIepaTyph NpH pacyeTe PH3MUECKUX

CBOKCTB, BXOJANINX B pacyeTHHe GopMyIn.
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