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Abstract-In the authors’ previous reports, the theoretical and experimental studies on flow and tem- 
perature fields in a curved pipe were made under the condition of uniform heat flux. In the former part of 
the present report. a theoretical analysis is made about temperature field far downstream from the pipe 
inlet under the condition of uniform wall temperature, following the same procedure as in the previous 
papers. Nusselt number is found to be remarkably affected by a secondary flow due to curvature. The 
result shows that in the first-order approximation the Nusselt number of heat transfer in a curved pipe 
does not differ for uniform wall temperature or uniform heat flux case, in both laminar and turbulent 
regions. 

In the latter part, the formulae of Nusselt numbers obtained by the authors’ study are arranged so as to 
have simpler expression for a practical use. 

It is also investigated what temperature should be chosen in calculation of physical properties when these 
Nusselt number formulae are used. 
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NOMENCLATURE 

wt at the center of a cross section 
perpendicular to a pipe axis ; 
radius of a pipe ; 
coefficient, - (aP/az); 
coefficient giving T, [equation 

W1; 
specific heat of fluid at constant 
pressure ; 
dimensionless velocity of the 
secondary flow in a flow core ; 
eigenfunction of (T, - T) ; 
eigenfunction for ah ; 
dimensionless temperature 

CL - T)/(T, - T,); 
heat-transfer coefkient, Nu,k/2a ; 
mean heat-transfer coefftcient be- 
tween To and Tl ; 
Dean number, = ReJ(a/R) ; 
heat conductivity ; 
normalizing constant for g [equa- 
tion (21)J ; 

Nusselt number, 

= [2~Q,,lK - T,)] ; 
dimensionless pressure, 

= (a2/v2)(p/p) ; 
Prandtl number, = pcJk ; 
pressure ; 
heat flux ; 
heat flux at the wall ; 
mean value of Q, around the 
periphery (lc/ = - n N n) ; 
dimensionless heat flux, 

Qalc,dT, - T,); 
dimensionless heat flux at the wall ; 
mean value of q*, around the 
periphery (II/ = - n N n) ; 
dimensionless heat flux in the 
fluid ; 
radius of curvature of the pipe 
axis ; 
Reynolds number, = (2aW,/v) ; 
co-ordinate in radial direction in 
the cross section ; 
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S, 
T, 
T ?w 
T mL3 

T W’ 
To. 

total area of wall in a spiral pipe ; 
temperature ; 
mixed mean fluid temperature ; 
temperature giving h, [“C] ; 
wall temperature ; 
fluid temperature at the pipe inlet, 
or mixed mean temperature of 
cold fluid at the inlet or the outlet 
[“Cl; 

case of uniform heat flux 
(constant); 
co-ordinate in circumferential 
direction in the cross-section per- 
pendicular to the pipe axis. 

Tl* 

ATh 

u, 

I/, 

W, 

w,- 
X, 
X, 

Y, 
Z, 

mixed mean temperature of hot 
fluid at the inlet or the outlet [“Cl ; 
logarithmic mean temperature 
difference ; 
component of velocity in r-direc- 
tion, u = Us/v ; 
component of velocity in *- 
direction, v = Va/v ; 
component of velocity in z- 
direction, w = Wa/v ; 
mean velocity ; 
equation (29) ; 

rlcos$; 
q sin *; 
co-ordinate along the pipe axis, 
Rtl, z = Z/a. 

Subscripts 
0, value at the pipe wall ; 
1, value at the flow core region ; 
c, a curved pipe ; 

;, 
a straight pipe ; 
value at l = 6; 

6 T, value at r = 6,. 

1. INTRODUCTION 

FORCED convective heat transfer in a curved 
pipe is found widely in such various industrial 
equipments as spiral tube heat exchangers. 
However, only a few papers have been reported 
about this problem and sufficient reliable data 
are not available. The studies made up so far 
by other investigators are mainly experimental 
ones. These experiments do not always interpret 
the cause of increase in pressure drop and heat- 
transfer rate due to curvature. 

Greek symbols 
cli* eigenvalue ; 

6, minimum eigenvalue ; 

6, thickness of the boundary layer 
divided by the radius of pipe, a ; 

6 T. thickness of the thermal boundary 
layer divided by the radius of 
pipe, a; 

6 In’ mean value of 6 around the 
periphery ($ = - 7t N n) ; 

Y 

i-i, 

63/a; 

= R/a; 

% = r/a; 

e, axial co-ordinate ; 

PL, viscosity ; 
V, kinematic viscosity ; 

5. 1 ---Vi 

P? density ; 
T, wall temperature gradient in the 

The purpose of the present study is to examine 
heat-transfer mechanism in a curved pipe 
theoretically and experimentally, and to present 
the design data which are important for practical 
use. From a practical point of view, the case 
when a secondary flow due to curvature gives a 
remarkable effect on heat-transfer coefficient is 
analysed in our research. The authors have 
already analysed theoretically the flow and 
temperature fields in fully developed laminar and 
turbulent flows in the first [l] and second [2] 
reports. The results of theoretical analyses have 
been ascertained by experiments. These theo- 
retical and experimental studies were done under 
the condition of uniform heat flux. This wall 
temperature condition is often found in a 
counter-flow heat exchanger. 

On the other hand, we have another wall 
temperature condition where fluid flowing 
through a spiral tube is heated or cooled under 
the condition of uniform wall temperature. 
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Therefore, for practical purposes, it is also 
necessary to examine heat transfer in a curved 
pipe for the case when the wall temperature is 
kept uniform. The former part of this report is 
devoted to theoretical analysis of temperature 
field in the region not close to the pipe inlet 
under the condition of uniform wall temperature. 

In the previous papers we have discussed the 
velocity and temperature fields both of which 
are fully developed toward pipe axis. Usually 
a straight pipe is jointed to the inlet of the 
curved pipe and Ito [3] reported that the in- 
fluence of curvature goes upstream in a straight 
pipe thirty times of a pipe diameter as far from 
the curved pipe inlet. This fact may be under- 
stood as to show that a secondary flow begins 
to develop fairly upstream before the inlet of a 
curved pipe. Moreover, the secondary flow 
tends to accelerate development of the flow and 
temperature fields by its mixing effect. This 
extremely shortens the entrance length of a flow 
in a curved pipe which is defined as the length 
from the curved pipe inlet to the beginning of the 
fully developed region. Therefore, in the case of a 
pipe coiled several times, the influence of the 
entrance region on flow resistance and heat 
transfer is negligibly small. In such cases, the 
resistance coefftcients and the Nusselt number 
formulae obtained in the previous papers [l, 21 
can be used along almost a whole length of a 
coiled pipe. However, when the coiled pipe is 
very long, there are cases when the fluid tempera- 
ture difference between the pipe inlet and the 
outlet is very large, and the physical properties 
vary considerably. In these cases, if the tempera- 
ture to be used for evaluation of physical 
properties in the formulae is known, the formulae 
for heat-transfer calculation become useful for 
design engineers. 

For this purpose cases are studied when 
Prandtl number is near unity or more, and 
variation of temperature in a cross section 
perpendicular to a pipe axis is not so large and 
physical properties in a cross section are regarded 
as constant. The Nusselt number‘ formulae 
obtained so far are arranged to be in simple 

forms so that they are referred conveniently. By 
the direct use of these simpler formulae, the 
temperature giving physical properties for the 
calculation of average Nusselt number of a 
long coiled pipe is shown for air, water and oil. 

2. THEORETIC ,ANALYSIS OF TEMPERATURE 
FIELD UNDER THE CONDITION OF 
UNIFORM WALL TEMPERATURE 

As shown in Fig. 1, when a fluid flows 
through a pipe with a uniform wall temperature, 
the temperature profile is changed from the 
uniform profile at the pipe inlet to the charac- 
teristic one at downstream. In the figure, 2 is a 
co-ordinate along the pipe axis, R is a radius of 
curvature of pipe axis and 8 is an angle of 
curvature, whence Z = RO. Co-ordinates in a 
cross section perpendicular to pipe axis are 
shown in Fig. 2, where r is a radial co-ordinate 
and 1(1 is a peripheral co-ordinate. Figure 1 
shows the temperature profile in the plane AA. 

In order to analyse such a development of 
temperature distribution from the pipe inlet, 
the energy equation should be solved under the 
following boundary and initial conditions. 

Boundary condition. 

at r = a, T = T, 

where T is temperature and a is a radius of the 
pipe. 

Initial condition : 

at Z = 0, T = To. 

The solution may be expressed in the following 
form : 

T, - T =i&hxp[- @I (1) 

where JX: is an eigen value and fi(r, I//) is an eigen 
function. 

It may be difficult to obtain a solution for 
the whole region in the case when temperature 
distribution is distorted by such a secondary 
flow as that in a curved pipe. Let us consider the 
temperature distribution in the region not close 
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L-G-4 Region of similarity --) 

FIG. 1. Development of temperature distribution. 

to the pipe inlet where Z is large enough. When 
we write the smallest eigen value as a&, the 
term fO exp [ - c&Z] becomes predominant in 
equation (1). In that region, regardless of the 

FIG. 2. System of coordinates. 

initial condition, the temperature difference 
between the wall and fluid is written approxi- 
mately from equation (1) as follows : 

T, - T =foexp[- c&Z]. (2) 

The definition of a mixed mean temperature 
T, is given as 

WTr dr d+ (3) 

-n 0 

where W is a velocity component in the direc- 
tion of Z(O) ; and W, is a mean velocity. 

Substitution of equation (2) into equation 
(3) yields 

I (1 

T _ T =exP[-abZl 
w m 

na2 W, Sf W for dr d$. (4) 

-II 0 

Define a dimensionless temperature g as 
- - 

(5) 

When the velocity distribution is fully de- 
veloped. it can be shown from equations (2) and 
(4) that g is a function of only x and y, and does 
not change with Z. This fact is understood as 
temperature distribution profiles become almost 
similar in the region far downstream from the 
inlet as shown in Fig. 1. We call this region as a 
region of similarity and the analysis is made on 
this region. As mentioned in the introduction. 
the entrance region of a flow field in a curved 
pipe is usually short and in the case of a long 
coiled pipe almost the whole length of the pipe 
is reasonably regarded as the region of similarity. 

Although use of dimensionless temperature g 
expressed by equation (5) lessens the complexity 
of the problem. the analysis is not so easy as the 
case of uniform heat flux. In the present analysis. 
the second order solution by boundary-layer 
approximation as found in the previous papers 
[l, 21 is not calculated and only the largest terms 
necessary for the calculation of the first order 
solution are taken into account in the following 
analysis. 

All quantities are put in the dimensionless 
forms as follows. where U and I/ are velocity 
components in the r, I//-directions respectively; 
p, pressure; p, density; p, viscosity; v, kinematic 
viscosity: cP. specific heat of fluid at constant 
pressure; k, heat conductivity of fluid, and Q is 
heat flux. 

r] = r/a; H = R/a; z = Z/a( = H6); 

u = Us/v; 0 = Va/v ; w = Wa/v; 

P = (a2/v2)(plp); c = - aplaz. 
Reynolds number, Re = 2aW,,lv; 

cxo = a&, 4 = Qalc,dT, - Lb 
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2.1 Analysis for the Flow Field As in the previous papers [l? 21, the velocity 
As pointed out in the previous papers [l, 21, components in the core region are expressed as 

in the range of practical importance, a flow field follows : 

in a curved pipe differs greatly from that in a 
straight pipe. Namely, the centrifugal force Ul = D cos I,G 1 
causes a secondary flow, and stresses caused by u1 = - D sin + 
the secondary flow predominate over the entire (6) 

core region of the cross section of the pipe. A 
velocity distribution in the region except in a 

w1 =A+&os$ 
i 

thin layer adjacent to the pipe wall has a where the suffix 1 denotes the values in the core 
relatively gentle gradient as shown in Fig. 3. On and A = const. in both laminar and turbulent 
the other hand, in the thin region adjacent to regions. The dimensionless pressure gradient 

C is expressed by the following equation when 
the 3 power law is assumed for the turbulent 
velocity profile : 

Straight 
Velocity distributions are expressed in terms of 

pipe. D and a,,,, and D and 6, are obtained as follows : 

f 0.9656 K* (laminar flow) (9) 

D = 1 0.0852 Re3 (ir (turbulent flow) (10) 

c 4.6311 K-* (laminar flow) (11) 

6, =( 0.2566 be (;)2[’ 

FIG. 3. Velocity distribution. L (turbulent flow) (12) 

where K is so called Dean number 
the wall a velocity distribution has a steep 
gradient and this thin layer may be called a [ = Re &IR)]. 

boundary layer. The secondary flow in the core 
region is expressed practically by a uniform 2.2 Analysis of Temperature Field 

flow toward the outer side of curvature. The (a) Fundamental equations 

dimensionless velocity of the uniform secondary By using non-dimensional quantities the 

flow in the core is denoted by D, and the energy equation is expressed as follows : 

dimensionless thickness of the boundary layer 
is denoted by 6. Since the variation of 6 with 

a% 
peripheral angle is small, its variation is 

& hl$ + ?all/ - aoqz - -0 (13) 

neglected and 6 is replaced by its peripheral where q,r q$ and qz are dimensionless heat flux 
mean value 6,. in the q, $ and z-directions respectively. As 

2x 

i 
2Re (laminar flow) c= .6, 

I 0.0134 Re$ S; * (turbulent flow). (8) 
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shown in the previous papers, heat fluxes are 
expressed as 

qg=_ias 
or atj + w 

1 ag 
4*= -gjj-@++g 

I 

(14) 

qz = wg J 

where Pr is Prandtl number, and heat flux in 
z-direction due to heat conduction is ignored. 
In the case of turbulent flow, u, v, w and g denote 
time mean values. and heat fluxes caused by 
turbulent fluctuation should be added to each 
right-hand side of equation (14). However, 
when deriving temperature distribution in the 
flow core region, the contribution by turbulent 
fluctuation can be neglected as well as the terms 
due to heat conduction. 

(b) Determination ofa, 
In order to calculate a, we use the energy 

equation expressing heat balance on a whole 
cross section of the pipe. In consideration of 
heat balance as shown in Fig. 4 and putting an 

FIG. 4. Heat balance of fluid. 

inward heat flux at the wall Q,, we have the 
following relation : 
1 L 0 

s 
QwaW = y& 

ss 
WTr dr dlC/. (15) 

-n -n 0 

Equation (15) is transformed into the following 

non-dimensional form : 

4 wm =FRe (16) 

where q_ is the mean value around the periph- 
ery (* = - 71 - rc) of non-dimensional heat 
flux qw . 

(c) Flow core region 
On the assumption that heat transfer by a 

secondary flow in equation (14) is predominant 
in the core region, heat fluxes are expressed as 
follows : 

q’l = usI 

4s = ~li?l 

42 = WlcIl 1 

(17) 

Substituting equations (6) and (17) into equa- 
tion (13) and using perpendicular coordinates 
x = q cos 1(1 and y = q sin $ for the sake of 
simplicity, we have 

(18) 

The solution for equation (18) is obtained as 

gl = Nexp{$ @LX +&x9} (19) 

where N is constant. 
The profile of g1 by equation (19) is like that 

shown in Fig. 5. The figure shows a similar 
profile to that obtained under the condition of 
uniform heat flux. As we are discussing the 
temperature field in the core region, g1 given by 
equation (19) may be expanded as : 

+& (lx+&j3+...) > (20) 

=N l+~x+~(C+ZoA2)X2 
I 

+!$(~+~)2+..). (21) 
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The constant N is determined from equation 
(5) giving the definition of g so as to satisfy the 
relation : 

n 1 

By taking into account the terms out of g in the 
first report [l] enough to satisfy these condi- 
tions, g is written that 

wgtj dq d$ = 1. 

The integration of equation (22) is done in 
consideration that the boundary layer is ex- 
tremely thin, and g1 and w1 may be extended 

FIG. 5. Distribution of gl. 

over a whole cross section. By taking into 
account the terms to x2 in the expansion of 
equation (21), the following relation is obtained 

1 
N= (23) 

(d) Boundary layer 
(I) Laminar Jaw. In case of a laminar flow, 

q,,, is given by the temperature gradient in radial 
(q) direction at the wall. Dimensionless distance 
from the pipe wall is denoted by r (= 1 - n). In 
order to take into account the effect of Prandtl 
number, a thermal boundary layer of thickness 
BT is supposed along the pipe wall. The distribu- 
tion of dimensionless temperature g in the 
boundary layer should be assumed to solve an 
energy integral equation according to 6, < 6 
and BT > 6. 

In case of 6, < 6, the boundary conditions 
are 

at < = 0, g=o 

e = 6, 9 = 910 

(24) 

where gld denotes g1 at 5 = 6,c is the ratio L&/6 
and a function of Pr as obtained later. 

In case of BT > 6, g 1 as shown in equation (2 1) 
is applicable to the edge of the temperature 
boundary layer, and g is determined so as to 
satisfy the following boundary conditions [l] : 

at 5 = 0, g=o 

5 = 6,, 9 = ClldT 

where gldT denotes g1 at 5 = &.. 

(25) 

Dimensionless heat flux at the wall q,,, is ex- 
pressed as 

(26) 

where the suffi 0 denotes the value at the wall. 
Equation (24) or (25) is substituted into 

equation (26). In equations (24) and (25) gla and 
glbT are obtained by putting in equation (21) 
x = (1 - 6) cos $ and (1 - 6,) cos II/ res- 
pectively. Since 6 and 6, are very small com- 
pared with unity, we may put x x cost II/ and 
find 

91a = g1h-. 

Then in both cases of ~3~ 2 6, equation (26) 
becomes 

2 
4w = 41ai6Pr 

(27) 
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The mean value of q,,, is obtained from equa- 
tion (27). By using N in equation (23), we have 

e = 6 and use of equation of continuity yield 

2 
4 =- 

wm i6,PrX 
(28) 

where 

x= 
3a,C a;A” 

(29) 

l+jjjjT+$jT- 

For calculation of only the first approximation. 
6 is replaced by 6, 

It is evident from equation (29) that X is 
almost equal to unity when a&/D2 and aiA2/D2 
are small. The value of X from equation (29) is 
calculated and is shown in Fig. 6. The figure 

I.1 

o's06O+3 I 2 4 6 6iU 20 40 

Pr 

FIG. 6. X. 

shows that X is reasonably assumed to be unity 
in the first approximation. 

According this approximation, from equa- 
tions (16) and (28) a0 is given by 

8 
a0 = 

i 6, Re Pr’ 
(30) 

The ratio of temperature and velocity 
boundary-layer thickness [ is obtained by con- 
sidering heat balance in the boundary layer. 
We may put 6 4 1, q = 1 - < x 1, 8,/&j = 
- a,/ag - 0(6-l), u - O(D), u N (D,G) and 
* - o(l). 

From equations (13) and (14), the following 
boundary-layer equation is written 

1 a2g ag ag 

Ed!+/ I+!!$+% ( > (36) 

F=$-;)I+ +g+$). (37) 

-7 + u- - u- + a,wg = 0. 
~ra5 ag atj (31) 

Integration of equation (31) from t = 0 to about @ Ll]. 
In equation (36), E is replaced by its mean value _ _ 

where (l/Pr)(ag/a<)o is written as q,,, 
In case of & > 6, the integration has to be 

done from 5 = 0 to ?j = Br., however, since the 
difference between 6 and 6, is small, equation 
(32) is useful for both cases of 6, 3 6. The distri- 
butions of velocity components, u and w, in the 
boundary layer are written as explained in the 
lirst report [l]. 

u=l$!(:-2$+$)sin$ (33) 

w= ~+;cos*)(2$-$). (34) 

The order of magnitude of the terms in right 
hand side of equation (32) is examined by using 
equations (33) and (34) in advance. The first and 
second terms have the order of magnitude K* 
due to D, where K is Dean number [ = Re 
J(a/R)]. The third term has the order of magni- 
tude a,AG,. This is written as the order of 

magnitude K” as A = Re/2. The present analysis 
is concerned with the range of large K, so that 
the third term is small in comparison with the 
other terms which are convective terms due to a 
secondary flow. 

(i) The case of & < 6. Equations (24) and (33) 
are substituted into the right-hand side of 
equation (32). The dimensionless heat flux is 
written in the following form : 

where 

q,=E+Fcos$ (35) 
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The derivation of equations (36) and (37) is 
based on the linearization of 4ra as follows: 

the following equation for [ 

8 

D2d2Pr2 = 
0. (44) 

nl 
918 

=N 
I 

1 +$(I -@costi. 

+ $ (C + a,A2) (1 - ~5)~ cos’ $ 

(38) 

. (39) 

Using N in equation (23) and assuming X in 
equation (29) to be unity, we have from equation 

(37) 

(40) 

The similar procedure can be employed about 
E in equation (36). Namely, as aoC/D2 is smaller 
than unity and a,C/D’ 9 a#$A21D2, we approxi- 
mately have the following relation : 

(41) 

Equation (41) shows that the mean value of 
q,,, around the periphery (ti = - 71 N x) given 
by the energy balance equation in the boundary 
layer also satisfies equation (16). 

From equations (35). (40) and (41), q,,, is 
written that 

4lv = (42) 

On the other hand, q,,, is also expressed by 
(ag/LQ,. We have from equations (24) and (26) 

a,Re a,Re 
4w=-J- ~ + (DG,Pr ‘OS Ic/’ 

(43) 

689 

By substitution of D and 6, of equations (9) and 
(11) into equation (44) i is determined as 

i=;(l +J@ +Ij7$)} (45) 

Sincei < 1, Pr 2 1. 

(ii) The case of 6= > 6. By substituting equa- 
tions (25) and (33) into equation (32) we have 
the following equation from equation (32) just 
like the previous case 

a,Re 
4W = 4 + F’cos $ 

where 

(46) 

F’=$;++). (47) 

From equations (43) and (46) [ is determined 
as 

since i > 1, Pr 6 1. 
The results for c given by equations (45) and (48) 
are just the same as those in the first report [l]. 

(II) Turbulent flow. In case of turbulent flow, 
following the procedure shown in the second 
report [2]. qw can be reduced from Nusselt 
number formula of a straight pipe under the 
condition of uniform wall temperature, that is. 
q, is determined according to the local law of 
turbulent heat transfer in a pipe, which can be 
derived from Nusselt number formula for a flow 
in a straight pipe by use of some appropriate 
assumptions [2]. It may be assumed with 
sufficient accuracy that the local law in a straight 
pipe is applicable to the flow near the wall of a 
curved pipe. 

(e) Nusselt numbers 
The definition of Nusselt number is given by 

(4% By equating equations (42) and (43). we have 
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where Q,, is the mean value of Q, around the It is found that equation (51) is quite the same 
periphery (lc/ = - 7~ N 7~) and T, is defined by as the Nusselt number formula in the first 
equation (3). For a curved pipe. use of the approximation which is obtained in the first 
dimensionless quantities yields report [I] under the condition of uniform heat 

NM, = 2 q,,Pr = ff Re Pr. (50) 
flux. However, in the case of a straight pipe for 
uniform wall temperature, 

For laminar flow. by using rxO in equation (30) 
Nu, = 3.66. (52) 

and 6, in equation (11). equation (50) is written Then, Nu,/Nu, is different from the results of 
that the first report [l] and it is written that 

NM, = !!!!f! K+, 
i 

(51) 
0.236 Nu, 

---K+. 
Nu, i 

Table 1. Comparison of analytical procedure between two cases of wall temperature 
conditions 

Uniform heat flux Uniform wall temperature 

OS 

0 916” 

T, - T 

ra 

gnl 

T, - T 

T, - T, 

1 

Q@ 
c+a 

Q& 
cy(Tv - Tm) 

Re 

4 

Re 
- a0 4 

0 Nu, 
%n pr Re Pr 
p=- 

gn 28,. 

Re Pr 
2q_Pr = -a0 

2 

@, Pr ‘ldrn 

t 
= L(1 + Ma,) 

cd, qw.m 
where 

-1 m-l 
L = &,,Pr-(‘-“‘6,,, ‘A m , 

m-l C 
M=---- 

m 2D2 

m-1 

ti 
Nu,=/?Re m Pr” 

(53) 
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In case of turbulent flow, the analysis can be mation can be considered small and may not be 
done in a similar way with that shown in the affected remarkably by the condition of wall 
second report [2]. The result is shown in Table 1 temperature. Therefore, considering that Nusselt 
in comparison with the result under the condi- number formulae are the same for both cases, it 
tion of uniform heat flux. In the first report [l], may be concluded that Nusselt number formulae 
qw is defined as qw = Q,Jkz where z is a constant obtained under the condition of uniform heat 
wall temperature gradient along the pipe axis. flux can be applied with enough accuracy to the 
This definition is modified in Table 1. case where wall temperature is kept uniform. 

The detinition of non-dimensional tempera- 
ture g is given by @ in Table 1 and the mean 
value at the edge of the boundary layer gla, 
becomes as shown in Q in the same Table. 

For laminar flow, it is found by referring 
equations (40), (45) and (46) in the first report 

111 that gla, is equal to g,,,. For turbulent flow, 
although a slight difference is found by examina- 
tion of the analysis in the second report [2], 
gla, is almost equal to gm. 

Dimensionless heat flux q,,, is defined as @ in 
the Table, and considering heat balance over a 
whole section, we have q,,,,,,, mean value of q,,,, 
as @ in Table 1. Nusselt number is formed by 
q,,,,,, and g,,, (in the case of uniform wall tempera- 
ture, g, = 1). The analysis makes it clear that 
l/g, and a0 are corresponding to each other. 

3. PRACTICAL FORMULAE AND EVALUATION 

OF PHYSICAL PROPERTIES GIVING 

MEAN NUSSELT NUMBER 

As pointed out in the introduction, the length 
of an entrance region is extremely short in a 
curved pipe compared with that in a straight 
pipe, and the influence of pipe inlet may be 
negligible in the case of a long spiral pipe. We 
restrict the study of the entrance region by 
showing the reported experimental results. It is 
reported by Ito [3] that pressure drop becomes 
proportional to pipe length when 

Dimensionless heat flux qw is expressed as 
@ in Table 1. In case of turbulent flow, JC is 
constant, m = 4 or 5, and 4, is constant deter- 
mined correspondingly to K and m [2]. By 
equating 8 with @ in Table 1, g,,, and a, are 
obtained. 

8 ,/(R/a) 2 4.7 (54) 

where 0 is an axial angle shown in Fig. 2 
measured from the inlet of a curved pipe. About 
heat transfer, experiments done by Seban and 
McLaughlin [S] show a similar result of the short 
entrance region. 

Table 1 clarifies that, in case of laminal flow, 
when [ is the same, Nusselt numbers become 
equal for both cases of wall temperature condi- 
tion. 

Therefore, as mentioned in the introduction, 
the Nusselt number formulae obtained on the 
assumption that flow and temperature fields are 
fully developed can be used with enough 
accuracy for calculation of heat transfer rate in 
a long spiral pipe. 

It is reported by Seban and Shimazaki [4] 
that Nusselt number in a straight pipe for 
turbulent flow is hardly affected by the wall 
temperature condition. Therefore, 4, and K in 
Table 1 are almost equal for both wall tempera- 
ture conditions, and Nusselt number formulae 
for a curved pipe obtained in the second report 
[2] can be used for both cases. 

3.1. Practical Formulae of Nu, 
(a) Lqminar region 

In the first report [l], the formulae for 
Nusselt number obtained by the first and second 
order solutions of boundary-layer approxima- 
tion are presented. They are shown by a straight 
and a curved line respectively in Fig. 7. 

The present analysis are limited in the first 
order solution of boundary-layer approxima- 
tion, however correction by the second approxi- 

The analysis of resistance coefficient yields 
two lines similar to those shown in the figure, 
and the curve of the empirical formula given by 
Ito [3] enters between a straight and a curved 
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line. The experimental results about heat trans- 
fer [l] prove that correlation equation may be 
expressed referring these two lines and the curve 
of the empirical resistance formula [3]. This 
correlated curve is shown by a dashed line in 
Fig. 7 and may be used for practical purposes. 

I’ I- , 1 I 
I 
lo’ 

1 
IO" 

i 
10 IO' 

K r*hb&JFISl 

FIG. 7. NuJNu, - K diagram (Pr = 1). 

The similar lines can be drawn for various 
values of Pr ranging from the neighbourhood 
of unity to infinity. They are approximately ex- 
pressed by the following equation in a simpler 
form than the formulae in the previous paper [ 11. 

N,,, = F K*(l + 2.35 K-*). (55) 

The boundary-layer thickness ratio [ is 
obtained from equations (45) and (48), or from 
Fig. 8. The applicable range of equation (55) is 
considered to be k > 3O(Pr = 00) N 6O(Pr w 1) 
by taking into account of availability of the 
theoretical analysis for resistance coefficient [l] 
and of experimental results of oil obtained by 
Seban and McLaughlin [5]. 

0.; 
cI, O-6 

0.4 0 

a2 
O-6 MI I 2 466lO 20 406oeODo a30 400 

Pr 

FIG. 8. i 

,364 

Critical Reynolds number is given by Ito [3]. 

a 0.32 

Ree, = 2 x lo4 R 
0 

. (56) 

(b) Turbulent flow 
The results of the second report [2] are cited 

in the following. 
For gases. 

Pr a’ 

Nut = 26.2(Pr* - 0*074)Re’ E 0 

(57) 

This formula is applicable to the region? where 
Pr z 1 and Re(a/R)’ > 0.1. 
For liquids. 

NuJ+-0’4 = koRe* % 0 15 

x [’ + b-52.51j. (58) 

Applicable range is 

Pr > 1, Re(a/R)2’5 > 0.4. 

In Fig. 9, theoretical curves of Nu, are shown 
about the two values of R/a, 40 and 18.7, by 
taking Re as the abscissa. The curved pipes 
having the radius ratios of 40 and 18.7 were used 
in the authors’ experiments [I] and [2], and the 
experimental results are also shown. The curves 
drawn on the left hand side in the figure are the 
analytical results obtained by the pertubation 
method [6]. They are calculated on the assump- 
tion that the effect of the secondary flow is very 
small. The results diverge rapidly with increasing 
Re. 

It is clarified in Fig. 9 that the effect of R/a is 

less in turbulent region than in laminar region, 
while the gradient of Nu, against Re is large for 
turbulent flow. 
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FIG. 9. Nusselt number in curved pipes of R/a = 40 and 18.7. 

3.2. Temperature giving Physical Properties 
In order to examine what physical properties 

should be used in calculating heat-transfer rate 
by means of Nusselt number formulae for a 
fully developed flow with a large temperature 
change, we express the mixed mean temperatures 
of fluid defined by equation (3) at the inlet and 
the outlet by To and Tl respectively as shown in 
Fig. 10. Physical properties change with mixed 
mean temperature T, which increases or de- 
creases from To to Ti. In applications of spiral 
pipes as heat exchangers we often have a big 
temperature change, therefore, it is very im- 
portant to consider the change of physical 
properties to calculate heat-transfer coefficient 
h given by 

h = $ Nu,. (59) 

Physical properties in the formulae for Nu, 
and k change with temperature. 

We introduce the following definition of a 
mean heat-transfer coefficient, when Tl > To 

7-l 

The total heat-transfer area over the complete 
length of a spiral pipe is expressed by S, and the 
net heat flux passing S is denoted by QT. 
Depending on the wall temperature condition, 
QT is written as follows: 

Uniform heat flux : 

QT = %T, - T,h (61) 

Uniform wall temperature : 

QT=SATJL (62) 

where AT,,,, is the logarithmic mean temperature 
difference given by 

AIT;,,, = & - T, 

ln(T, - T,)/(T, - q)’ 
(63) 

It seems convenient for practical use to find a 
particular temperature TmL which gives h, in 
equations (61) and (62). The procedure is des- 
cribed in the following. By substituting equation 
(59) into equation (60), and integrating in an 
appropriate temperature range from To to Tl 
chosen respectively for air, water and oil, we 
obtain h,. The temperature which gives the same 
value of h with h, is defined as T,,. In equation 
(59). Nu, is given from equation (55) (57) or (58) 
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depending on whether a flow is laminar or 
turbulent. 

Results are shown as follows, when To is taken 
as a temperature at low-temperature side [“Cl 
either inlet or outlet : 

T,, = T, + c&q - 57,). (64) 

Values of C, are given in Table 2. 
Temperature ranges taken in the calculations 

are : 

air : 0°C - 200°C 
1 < (Tr + 273)/(T, + 273) < 2 

water: 10°C - 80°C 

oil : 20°C - 100°C. 

Table 2 shows that, when the Nusselt number 
formulae given by equations (55) (57) and (58) 

G 

FIG. 10. Spiral pipe. 

Laminar 

Table 2. The value of C, 

Air Water 

0.5 0.4 

Oil 

0.5 

Turbulent 0.5 0.5 0.5 

are used, physical properties at the arithmetic 
mean temperature between inlet and outlet may 
be taken in the calculations of heat-transfer 
coefficient for most cases. 

CONCLUSIONS 

The study is made in addition to the previous 
reports [l] and [2] for the purpose of obtaining 
the practical method of evaluating heat-transfer 
rate in a spiral pipe and the following conclusive 
results are obtained. 

(1) Theoretical analysis of the temperature 
field downstream from the pipe inlet under the 
condition of uniform wall temperature was 
made. The results prove that the formula of 
Nusselt number for uniform wall temperature 
case is the same with that for uniform heat flux 
case. 

(2) For the convenience of calculating heat- 
transfer rate in a long spiral pipe, the analytical 
results for laminar flow in the previous paper 
[l] are arranged and written in a simpler form 
as a practical formula of Nusselt number. The 
practical formulae for turbulent flow [2] are 
also shown, and the applicable regions of every 
formula are subjected. 

(3) Change of physical properties with temper- 
ature in these formulae is examined for the cases 
of air, water and oil. The results show that, 
except for the case of laminar flow of water, 
physical properties at the arithmetic mean 
temperature between inlet and outlet may be 
used. 
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RCsumCDans les articles precedents des auteurs, des etudes theoriques et experimentales sm la champs 
de vitesses et de temperatures dam un tuyau courbe ont tti faites dans le cas d’un flux de chaleur uniforme. 
Dans la premiere partie de Particle ci-dessous, on a analydthtoriquement le champ de temperatures loin 
a I’aval de Pent& du.tuyau dans le cas dune temperature parietale uniforme, en suivant le meme processus 
que dans les articles precedents. On a trouve que le nombre de Nusselt est modihe d’une facon remarquable 
par un tcoulement secondaire dO a la courbure. Le resultat montre que dans I’approximation du premier 
ordre le nombre de Nusselt pour le transport de chaleur dans un tuyau courbe pour le cas de la temperature 
paridtale uniforme ne.differe pas de celui pour le cas du flux de chaleur uniforme, soit dans la region 
laminaire, soit dans la region turbulente. 

Dans la derniere partie, les formules des nombres de Nusselt obtenues par les auteurs sont modifiees 
afin d’obtenir une expression plus simple pour un usage pratique. 

On a aussi recherche quelle temperature devrait &tre choisie pour calculer les prop&s physiques 
lorsque ces formules de nombres de Nusselt sont employees. 

Zuaamm&amnng-In den vorangegangenen Arbeiten der Autoren wurden die theoretischen und experi- 
mentellen Untersuchungen des Striimungs- und Temperaturfeldes in einem gekrtimmten Rohr unter der 
Bedingung gleichmhsigen Warmeflusses durchgefiihrt. Im ersten Teil des gegenwartigen Berichtes wird 
eine theoretische Analyse des Temperaturfeldes in grosser Entfernung stromabwarts vom Rohreinlauf Rir 
einheitliche Wandtemperatur gemacht, wobei wie in frtiheren Arbeiten verfahren wurde. 

Es ergibt sich, dass die Nusselt-zahl durch die Sekundarstriimung infolge der Krtimmung erheblich 
beeinflusst wird. Das Ergebnis zeigt, dass Nusselt-zahlen fur konstante Wandtemperatur oder konstanten 
W&met&s in erster Naherung nicht voneinander abweichen, sowohl fur laminare als such turbulente 
Bereiche. 

Im zweiten Teil sind die fIir die Nusselt-zahlen gefundenen Gleichungen so umgestellt, dass sich zur 
praktischen Verwendung einfachere Ausdrticke ergeben. 

Es wurde such untersucht. welche Temperatur zur Bestimmung der Stoffwerte in diesen Nusselt- 
gleichungen zugrundegelegt werden soll. 

AHao~am-B npenhtflyntux pa6oTax aBTopa TeopeTmecKK H aKcnepwMeKTabno uayqamcb- 

Tegeme M TeninepaTypHue nom B naortiyTot Tpy6e B ycnosmx OAIiOpORHOrO TennoBoro 
nOTOKa. B npemnynteti qacTn HaHKoZt pa6oTE.t TeopeTmecKHt4 aKama TemepaTypKoro 

nom Ka ynaneHm 0T sxoaa B Tpy6y Bmia no n0~0~y B ycno~mx~aoTepmn~ecKoticTe~Ka 

II~OB~AE~TC~~ no ~0Zt me rdeToxuKe, 9To II B npeaugyrqKx pa60Tax. Ha&qeKo, 4To Ha wicno 
HyCCeJIbTa aHaWfTeJlbIi0 BJIHfIIOT BTOp&iWbIe IIOTOKII, o6ycnoBneHHne KpWBElaHOti CTeHKH. 

PeayJIbTaTbl B IIepBOM npn6nnHtenun yKa8HBalOT Ha OTCyTCTBMe OTJIHWtt WiCeJI HyccenbTa 

WIJ-I UCKpEfBJleHHOfi Tpy6bI KaK B CJIy=Iae HaOTepMEl~eCKOfl CTeHKH,TaK Ei B CJly'Jae OnHOpOJJ- 

HOI'0 TeIIJlOBOrO IIOTOKa II B JIaMHHapHO2t,H B Typ6ylIeHTHOtt o6nacTn. 

@OpMyJIbI~SR'MCJIa HycceabTa,nOnyveHHne aBTOpaMH,IlpHBe~eHbl K BEI~y,AOCTaTOWiO 

npocToMy fiaxfi npaKTmecKor0 ynoTpe6neHaR. 

PaccmoTpeH Bonpoc 0 an6ope onpe~enmoqei TemnepaTypbt npK pacseTe @amecKKx 
CBOftCTB,BXO~FI~UX B paCYeTHbIe @OpMynbl. 


